首页> 外文OA文献 >Fusion of Multi-View and Multi-Scale Aerial Imagery for Real-Time Situation Awareness Applications
【2h】

Fusion of Multi-View and Multi-Scale Aerial Imagery for Real-Time Situation Awareness Applications

机译:多视图和多比例航拍图像融合,用于实时态势感知应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Manned aircraft has long been used for capturing large-scale aerial images, yet the high costs and weather dependence restrict its availability in emergency situations. In recent years, MAV (Micro Aerial Vehicle) emerged as a novel modality for aerial image acquisition. Its maneuverability and flexibility enable a rapid awareness of the scene of interest. Since these two platforms deliver scene information from different scale and different view, it makes sense to fuse these two types of complimentary imagery to achieve a quick, accurate and detailed description of the scene, which is the main concern of real-time situation awareness. This paper proposes a method to fuse multi-view and multi-scale aerial imagery by establishing a common reference frame. In particular, common features among MAV images and geo-referenced airplane images can be extracted by a scale invariant feature detector like SIFT. From the tie point of geo-referenced images we derive the coordinate of corresponding ground points, which are then utilized as ground control points in global bundle adjustment of MAV images. In this way, the MAV block is aligned to the reference frame. Experiment results show that this method can achieve fully automatic geo-referencing of MAV images even if GPS/IMU acquisition has dropouts, and the orientation accuracy is improved compared to the GPS/IMU based georeferencing. The concept for a subsequent 3D classification method is also described in this paper.
机译:有人驾驶飞机长期以来一直用于捕获大型航空图像,但是高昂的成本和对天气的依赖性限制了其在紧急情况下的可用性。近年来,MAV(微型航空器)作为一种用于航空图像采集的新型设备而出现。它的可操作性和灵活性使您可以快速了解感兴趣的场景。由于这两个平台以不同的比例和不同的视角提供场景信息,因此融合这两种类型的互补图像以实现对场景的快速,准确和详细的描述是有意义的,这是实时情况感知的主要考虑因素。本文提出了一种通过建立公共参考系来融合多视点和多尺度航拍图像的方法。特别地,可以通过像SIFT这样的尺度不变特征检测器来提取MAV图像和地理参考飞机图像之间的共同特征。从地理参考图像的联系点,我们得出相应地面点的坐标,然后将其用作MAV图像全局束调整中的地面控制点。这样,MAV块与参考帧对齐。实验结果表明,即使基于GPS / IMU的地理配准,该方法也可以实现MAV图像的全自动地理配准,并且提高了定位精度。本文还介绍了后续3D分类方法的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号